Roll No. .....

Total Pages: 4

## OMMS/M-19

## 13027

## MANAGEMENT SCIENCE

Paper: CP-201

Time: Three Hours]

[Maximum Marks: 70

Note: Attempt eight questions, out of ten question, (each of 5 marks) from Part-A and three questions, out of five questions, (each of 10 marks) from Part-B.

## PART-A

- 1. Discuss the assumptions and scope of linear programming.
- 2. Discuss the features and classifications of physical models.
- 3. Solve the following LPP graphically:

$$Maximize Z = 3x_1 + 2x_2$$

Subject to

$$2x_1 + x_2 \le 12;$$
  
 $x_1 + x_2 \le 10;$   
 $-x_1 + 3x_2 \ge 6$ 

and  $x_1, x_2 \ge 0$ 

4. Find the initial feasible solution, by North-West corner method, for the following transportation problem for maximising the total profit (Rs.).

13027/400/KD/1854

[P.T.O. 1/5



- 5. Using suitable examples, explain and illustrate
  - (i) Two person zero-sum game and
  - (ii) Pure strategy.
- 6. Discuss in detail the costs associated with inventories.
- 7. What is goal programming? Differentiate between preemptive and non-preemptive goal programming.
- 8. What is safety stock? Why should an organisation maintain it? Which factors affect the level of safety stock?
- 9. Using examples, explain and illustrate dummy activity and critical path.
- 10. Discuss in detail various types of behaviour of the customers while waiting for the service and various orders by which customers are picked for service.

13027/400/KD/1854

2

downloade Rivid Collins of Collin

- 12. Discuss the process, advantages, limitations and applications of simulation.
- 13. Write notes on:
  - (a) Sensitivity analysis.
  - (b) Degeneracy in transportation problems.
- 14. Estimated sales revenue (in 000' Rs) of 5 salesmen in 5 districts is as given below:

|          | District |    |    |     |    |
|----------|----------|----|----|-----|----|
| Salesman | A        | В  | C  | D   | E  |
| P        | 85       | 75 | 65 | 125 | 75 |
| Q        | 90       | 78 | 66 | 132 | 78 |
| R        | 75       | 66 | 57 | 114 | 69 |
| s        | 80       | 72 | 60 | 120 | 72 |
| T        | 76       | 64 | 56 | 112 | 68 |

Find an optimal solution for maximising the total revenue.

13027/400/KD/1854

3

[P.T.O.

15. Duration (in weeks) of the activities of a project are given below:

Activity 1-2 1-3 2-4 2-6 3-4 4-5 4-6 5-7 6-7 7-8

Duration 10 11 13 14 10 7 17 13 9 4

Draw the network, identify the critical path and determine EST and LFT for each activity.

anninated from Solvin Collins

13027/400/KD/1854